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Exploring the Use of GAN Models in Generating Animal Testing Results

N

* Disparate animal species and strains
* Variability in animals for study

» Small experimental groups

» Selection of outcome measures

* VVariable duration of follow up

O

GAN-based Virtual animal testing

* Learning distribution of data to generate
the new data with same characteristics

» Data augmentation

* VVersatility

* Improvement over time
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AnimalGAN model development

| Open TG-GATES

owiz G

f In vivo repeated dose experiments

* 110 Compounds
[ 4 Time points (i.e., 3/7/14/28 days)
.« 3 Dose levels (i.e., low/medium/high)

AnimalGAN model evaluation

In vivo repeated dose experiments

*» 28 Compounds
= 4 Time points (i.e., 3/7/14/28 days)
» 3 Dose levels (i.e., low/medium/high)

‘ Open TG-GATES
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Real clinical pathology data

1 . ;
Gaussian

Real Clinical pathology data

\

Clinical chemistry and hematology
38 measurements (e.g., ALT, AST,
and TBIL)

Generator (G)

Naise

= ﬂnimol
> GEAN

'&
Clinical chemistry and hematology

38 measurements (e.g., ALT, AST,
and TBIL)

Discriminator (D)
Agree
or Not?

s

Fine-tuning

Generated Clinical pathology data )

Clinical chemistry and hematology
measurements (e.g., ALT, AST,
and TBIL) Z=.-

\

Generated Clinical pathology data |

Clinical chemistry and hematology
38 measurements (e.g., ALT, AST,
and TBIL)

» Root-mean-square error (RMSE)
« Cosine similarity
+ t-SNE

Training set: test set = 80%: 20% &

Input of Generator (3556-length vector)
1828-lengthTreatment condition vector

*  Compound: Mordred descriptor (1826-length)
« Time:3/7/14/28 days (1-length)

* Dose: low/middle/high-1:3:10 (1-length)

1828-length Gaussian Noise: mimic animalvariance

Input of discriminator (1866-length vector)
» 38realand generated clinical pathology data

+ 1828-lengthTreatment condition vector

Normalization matters

* [-1,1] for both generator and discriminator

“invalid records” check:

*  White blood cells (WBCs) are composed of neutrophils,
eosinophils, basophils, monocytes, and lymphocytes, so
the total percentages of each type of WBC should not
exceed 100%.

¢ Cut-off: 105% by taking system errorsinto consideration



High Concordance between Real Data and Generated Data

(A)

RMSE

N

Average 100 generated clinical pathology measures that passed “invalid records” check were used!!!
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Boxplot of (A) RMSE - Root Mean Square Error, (B) Cosine Similarity between generated

data and their corresponding animal testing data in the test set, and (C) t-SNE plot of test set.
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AnimalGAN vs. QSAR model

others

QSARs

12 regressors (i.e., k-nearest neighbors, decision
tree, extremely randomized tree, random forest,
epsilon support vector regression, linear support
vector regression, stochastic gradient descent,
AdaBoost, gradient boosting, Bayesian ARD
regression, Gaussian process regression and multi-
layer perceptron)

5-fold cross validation for hyperparameter

optimization — same training set



A Framework to Evaluate Consistency on Toxicity
Assessment

Real
ClinChem & Hematology

Assessment
* Change
* No change
4 N — —_—
Treatments dentif ated ch
. entify treatment-related changes - o
Compounds Control group in clinical pathology m rement ""'anSIStenCX’ﬁ
Dose level P gy measurements ~N.
« Time point "
J/ Assessment

+ Change
* No change
Q .
dﬁ/’))o/ Generated

ClinChem & Hematology
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High Consistency Between Real and Generated Results for
Hepatotoxicity and Nlephrotoxicity-related Clinical Pathology
NMeasurements

" Hepatotoxicity-related measurements Consistency between &> and _f|™
TBIL DBIL

‘ Nephrotoxicity-related measurements

(0.979) ((0.988) ((0.994) ((1.000) ((1.000) ((1.000) ((1.000
BUN K CRE Na Cl Ca IP
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External validation with DrugMatrix

Criteriafor validation set

s Training

a « Experiment b
= AnimalGAN «» External Validation
» Same rat strain and sex
gos e * Asimilar repeated dose
2 e 0.4 E‘: .
g LA H study design as TG-GATEs
A i il « Common compounds
ALP TC TBIL GLC BUN CRE Na Cl TP RALB AST ALT LDH b % '. B DY x g g
Clinical Chemlslry ‘8¢ .";-:6; N - s y S tested b\/ TG-GATEs to
e b oe = g
e @Y v el vl e £ . . .
e i, & o | 04 establish a baseline in
A ’4 . . E
X ' " comparison
2 06 s, Y
o 04 b2 - « Contained clinical
Kerna/p,,-nc’h/ 0.0 e
Al Cy, T : )
LTl pathology measurements
a/ned Ralig: ; . ‘ -
HU  MCV MCH MCH(’.': Plat Neu Eos Bas Mono Lym #0009 that S|g nificantl_\/
ematology
) overlapped with those
« 70 common compound (175 treatment) for baseline: 81.20%
tested by TG-GATEs.

« 355 external validation (717 treatment condition): 82.85%
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AnimalGAN for iDILI Detection — Enhancing the Statistical Power of Small
Experimental Groups through Data Augmentation with AnimalGAN

Criteria Troglitazone Pioglitazone Rosiglitazone
ALT=ULN 1230 1820 1467
AST=ULN 7413 4315 4591
TBIL=ULN 3421 2083 2215

ALT=ULN or AST=ULN,

and TBIL=ULN 375 161 158

The number of rats exhibiting drug-induced liver injury estimated by AnimalGAN for the three
thiazolidinediones under the 28-day study with high dose in 100,000 rats
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Potential Improvement and Context of Use

Problems

Input (compounds descriptor 1826 +dose 1 +time+ 1)

Controls (matched controlin TG-GATESs)

Model architecture

Data sets

Context of Use

Potential improvement

Strategiesto emphasize the wight of dosage
+ Embedding-basedrepresentation
* Attentionisall youneed

Chemical descriptors matter?
* Chemicalembeddingfrom large chemical-based language
models

How to deal with new compound without matched control?

*  Toward implementingvirtualcontrol groupsin nonclinical
safety studies (PMID: 38043132)

How to adjust loss functions are more for toxicology applications?
» AdjustLossfunction + biological-based criteria

How to develop more robust AnimalGAN model?
« SENDdata

« Experiment design specific model — repeated dose experiment design of Open TG-GATEs
« AnimalGAN is particularly suitable for screening purposes, excelling in the detection of toxicology

signals and iDILI
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T&IG ﬂ N for Toxicogenomics

Two main toxicogenomics

objectives:
Mechanistic
v Compound “N- interpretation
v’ Dose level | mmp T@N —
v' Time point .
v Noise Geneexpression Tox!mt_y
Profiles prediction
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Concordance between Real Data and Generated Data
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Pearson correlation coefficient

1.0 =

0.8 —

0.6

0.4

;2 =

0.0

0.750%+0.082

_02 -

FoldChange
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#1: ToxGAN for Biomarker Development
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Generated transcriptomic
profiles

92 necrosis
92 non-necrosis
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Scenario #1: Real

Real transcriptomic

profiles |

Scenario #2: Generated

’?"O\ DNN model

: \O\>O for
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Performance comparison
between two scenarios
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#2: ToxGAN for Biomarker Application

Q2: How well an existing
biomarker perform on

Deep Neural
Networks

=

Develop a model (biomarker) for ‘

Necrosis ToxGAN data for
biomarkers screening purpose?

288 BE L

.:.Nec.(ds.i_s::' - Necrdsis
Rositive: . Negative .

necrosis with real gene expression )
data l Test set: 336 Treatments l
(Cmpd, dose, time) N
Microarray ToxGAN
“real” data generated data

__Daa | Real | Generated
073 079

|m| Boehringer MCC 0.43 0.60
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ToxGAN Recapitulated Significant GO Terms

Study Design: to compare significant GO
terms from gene expression data in 28-day

repeated dose studies:
* Real data from microarray exp
 ToxGAN generated data

Findings: GO concordance between real
and generated gene expression profile
were high

GO terms found in
Both real and generated data
B Generated data only

=\ Boehringer W Real data only
I|"I Ingelheim

Enriched GO terms

Compounds




ToxGAN for Improved Read Across

HO

Ibuprofen — OTC drug
On the market >30 yrs with
not much hepatotoxicity

m
HO

Ibufenac — withdrawal

Marketed in 1966 and withdrawn in
1968 due to hepatotoxicity (no facts
given). Late study demonstrated
elevated ALT in 12/36 patients and
jaundice in 5/400 cases
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Potential Improvement and Context of Use

Problems

Input (compounds descriptor 1826 +dose 1 +time+ 1)

Suboptimal performance of TG-GANfold_change

Model architecture

Data sets

Context of Use

N

Potential improvement

Strategiesto emphasize the wight of dosage
 Embedding-basedrepresentation
* Attentionisall youneed

Chemical descriptors matter?
¢ Chemicalembeddingfrom large chemical-based language
models

» Extra biastaken from autoencoder
» Biologicalvarianceisenlargedinfold change level

How to adjust loss functions are more for toxicology applications?
* AdjustLossfunction + biological-based criteria

How to develop more robust ToxGAN model?
 LINCS data

Experiment design specific model — repeated dose experiment design of Open TG-GATEs
ToxGAN is particularly suitable for (1) genomics-based prediction model; (2) biological data-based
ReadAcross; and (3) Initial prioritization of key functions or AOPs
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Take-home Messages

* No one-fit-all Al solution — context of use
 Position different GAN models into specific toxicological questions

 Beyond GANs — Diffusion models??

Denoising diffusion models

® Forward / noising process

O  Sample data p(x,) = turn to noise

pr(Xp)~N (0,1

Pure

X711 Xt .
sample noise

® Reverse [ denoising process

0 Sample noise pr(xy) » turn into data
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TransorRGAN Mapping of Rat Transcriptomic Profiles
Between Organs, Ages, and Sexes

Heart S—— 320 RNA
Samples

!

RNA-Seq Library
Ribg-Zero Protocol

EZ 3 :

Raw Data
Trimmed Data
Software: Trimmama fi
Mapping Reads to Genome
Software: Tophat Reference: rmd, ERCC transcripts
'

Gene Assembly & Quantification
Software: Culllinks
Gene model: AceView w08, ERCC transcripts

.

Expression Matrix
Mormalization: log2FPKM

Sequencing
Ilumina HiSeq2000

—d

¥

Further Analysis

Rat BodyMap: Nature Communications volume 5, 3230 (2014)
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TransOrGAN could Translate Transcriptomic Profiles from One
Organ to Another
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